Directed evolution of λ integrase activity and specificity by genetic derepression.

نویسندگان

  • Jia Wei Siau
  • Sharon Chee
  • Harshyaa Makhija
  • Cho Mar Myint Wai
  • Shree Harsha Vijaya Chandra
  • Sabrina Peter
  • Peter Dröge
  • Farid J Ghadessy
چکیده

Advances in genome engineering are attendant on the development of novel enzyme variants with programed substrate specificities and improved activity. We have devised a novel selection method, wherein the activity of a recombinase deletes the gene encoding an inhibitor of an enzyme conferring a selectable phenotype. By using β-lactamase and the β-lactamase inhibitor protein, the selection couples recombinase activity to Escherichia coli survival in the presence of ampicillin. Using this method, we generated λ integrase variants displaying improved in vitro recombination of a non-cognate substrate present in the human genome. One generalist integrase variant displaying enhanced catalytic activity was further used in a facile, single-step transformation method to introduce transgenes up to 8.5 kb into the unique endogenous attB site of common laboratory E.coli strains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of bacteriophage λ integrases with altered recombination specificity by in vitro compartmentalization

In vitro compartmentalization (IVC) was employed for the first time to select for novel bacteriophage lambda integrase variants displaying significantly enhanced recombination activity on a non-cognate target DNA sequence. These variants displayed up to 9-fold increased recombination activity over the parental enzyme, and one mutant recombined the chosen non-cognate substrate more efficiently t...

متن کامل

Evolution of genetic switch complexity

The circuitry of the phage λ genetic switch determining the outcome of lytic or lysogenic growth is well-integrated and complex, raising the question as to how it evolved. It is plausible that it arose from a simpler ancestral switch with fewer components that underwent various additions and refinements, as it adapted to vast numbers of different hosts and conditions. We have recently identifie...

متن کامل

Flipping chromosomes in deep-sea archaea

One of the major mechanisms driving the evolution of all organisms is genomic rearrangement. In hyperthermophilic Archaea of the order Thermococcales, large chromosomal inversions occur so frequently that even closely related genomes are difficult to align. Clearly not resulting from the native homologous recombination machinery, the causative agent of these inversions has remained elusive. We ...

متن کامل

Traffic at the tmRNA gene.

A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least f...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 28 7  شماره 

صفحات  -

تاریخ انتشار 2015